

Reg.	No.	: .	
Mam	e:		

IV Semester M.Sc. Degree (CBSS – Reg./Supple./Imp.) Examination, April 2023 (2019 Admission Onwards) MATHEMATICS MAT4C16: Differential Geometry

Time: 3 Hours

Max. Marks: 80

PART - A

Answer four questions from this Part. Each question carries 4 marks.

- 1. Define the Gradient Vector field. Find the gradient vector field of the function $f(x_1, x_2) = x_1 + 2x_2^2$, $x_1, x_2 \in R$.
- 2. Sketch the graph of the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = x_1^2 + x_2^2$.
- 3. Define the term geodesic. Prove that geodesics have constant speed.
- 4. Compute $\nabla_{v} f$ where $f(x_1, x_2) = 2x_1^2 3x_1x_2^2$, v = (1, 0, -1, 1).
- 5. Prove that $\beta(t) = (\sin t, -\cos t)$ is a reparametrization of $\alpha(t) = (\cos t, \sin t)$, $0 \le t \le 2\pi$.
- 6. With usual notations, Prove that d(f + g) = df + dg.

PART - B

Answer four questions from this Part without omitting any Unit, each question carries 16 marks.

Unit - I

- 7. a) Find the integral curve through (1, 1) of the vector field $X(x_1, x_2) = (x_1, x_2, -x_2, -x_1)$.
 - b) Let a, b, c \in R such that ac $-b^2 > 0$. Show that the maximum and minimum values of the function $g(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$ on the circle $x_1^2 + x_2^2$
 - = 1 are λ_1 , λ_2 where λ_1 , λ_2 are the eigenvalues of the matrix $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$.
 - c) State and Prove the Lagrange Multiplier Theorem.

8. a) Prove the following: Let S be an n surface in R^{n+1} , $S = f^{-1}(c)$ where $f: U \to R$ is such that $\nabla_q \neq 0$ for all $q \in S$. Suppose $g: U \to R$ is a smooth function and $p \in S$ is an extreme point of g on S. Then there exist a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$.

-2-

- b) Sketch the cylinder $f^{-1}(0)$ where $f(x_1, x_2, x_3) = x_1 x_2^2$.
- c) Find the orientations on the n-sphere $x_1^2 + x_2^2 + x_3^2 + \dots + x_{n+1}^2 = 1$
- 9. a) Sketch the level curves (c = -1, 0, 1) and graph of the function $f(x_1, x_2) = x_1^2 + x_2^2$.
 - b) i) Verify that a cylinder over an n 1 surface in Rⁿ is an n-surface in R
 - ii) Show that a surface of revolution is a 2-surface.
 - c) Show that graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.

Unit - II

- 10. a) Describe the spherical image of the 2-surface $f^{-1}(1)$, oriented by $\frac{-\nabla f}{\|\nabla f\|}$ where $f(x_1, x_2, x_3) = x_2^2 + x_3^2$.
 - b) Let S denote the cylinder $x_1^2 + x_2^2 = 1$ in R^3 . Show that α is a geodesic of S if and only if α is of the form $\alpha(t) = (\cos(at + b), \sin(at + b), ct + d)$ for some a, b, c, d \in R.
- 11. a) Prove that in an n-plane parallel transport is path independent.
 - b) Prove that The Weingarton map is self-adjoint.
- 12. a) Let $\alpha(t) = (x(t), y(t))$ be a local parametrization of the oriented plane curve C. Show that $\kappa \circ \alpha = x'y'' x''y' / (x'^2 + y'^2)^{3/2}$.
 - b) Show that
 - i) $D_v(fX) = (\nabla_v f)X(p) + f(p)D_v X$
 - ii) $\nabla_{V}(X.Y) = (D_{V}X).Y(p) + X(p).(D_{V}Y).$

Unit - III

- 13. a) Prove the following: Let C be a connected oriented plane curve and let β: I → C be a unit speed global parametrization of C. Then β is either one to one or periodic. Moreover, β is periodic if and only if C is compact.
 - b) Find the Gaussian curvature of the ellipsoid $x_1^2/a^2 + x_2^2/b^2 + x_3^2/c^2 = 1$ oriented by its outward normal.

- 14. a) Let S be an oriented 2-surface in R³ and let p \in S. Show that for each v, w \in S_p, L_p(v) × L_p(w) = K(p) v × w,
 - b) Derive the formula for Gaussian curvature of an oriented n-surface in \mathbb{R}^{n+1} .
- 15. a) Find the arc length of the curve $\alpha:[0,1]\to \mathbb{R}^2$ where $\alpha(t)=(t^2,t^3)$.
 - b) Prove the following: Let S be an n surface in Rⁿ⁺¹ and let f: S → R^k. Then f is smooth if and only if f ∘ φ: U → R^k is smooth for each local parametrization φ: U → S.
 - c) Compute $\int\limits_{\alpha} (x_2 dx_1 + x_1 dx_2)$, where $\alpha(t) = (2 \cos t, \sin t), 0 \le t \le 2\pi$.

